From phase‐based to displacement‐based gating: a software tool to facilitate respiration‐gated radiation treatment
نویسندگان
چکیده
The Varian Real-time Position Management (RPM) system allows respiratory gating based on either the phase or displacement (amplitude) of the breathing waveform. A problem in clinical application is that phase-based gating, required for respiration-correlated (4D-CT) simulation, is not robust to irregular breathing patterns during treatment, and a widely used system version (1.6) does not provide an easy means to change from a phase-based gate into an equivalent displacement-based one. We report on the development and evaluation of a robust method to convert phase-gate thresholds, set by the physician, into equivalent displacement-gate thresholds to facilitate its clinical application to treatment. The software tool analyzes the respiration trace recorded during the 4D-CT simulation, and determines a relationship between displacement and phase through a functional fit. The displacement gate thresholds are determined from an average of two values of this function, corresponding to the start and end thresholds of the original phase gate. The software tool was evaluated in two ways: first, whether in-gate residual target motion and predicted treatment beam duty cycle are equivalent between displacement gating and phase gating during 4D-CT simulation (using retrospective phase recalculation); second, whether residual motion is improved with displacement gating during treatment relative to phase gating (using real-time phase calculation). Residual target motion was inferred from the respiration traces and quantified in terms of mean and standard deviation in-gate displacement measured relative to the value at the start of the recorded trace. For retrospectively-calculated breathing traces compared with real-time calculated breathing traces, we evaluate the inaccuracies of real-time phase calculation by measuring the phase gate position in each trace as well as the mean in-gate displacement and standard deviation of the displacement. Retrospectively-calculated data from ten patients were analyzed. The patient averaged in-gate mean +/- standard deviation displacement (representing residual motion) was reduced from 0.16 +/- 0.14 cm for phase gating under simulation conditions to 0.12 +/- 0.08 cm for displacement gating. Evaluation of respiration traces under treatment conditions (real-time phase calculation) showed that the average displacement gate threshold results in a lower in-gate mean and residual motion (variance) for all patients studied. The patient-averaged in-gate mean +/- standard deviation displacement was reduced from 0.26 +/- 0.18 cm for phase gating (under treatment conditions) to 0.15 +/- 0.09 cm for displacement gating. Real-time phase gating sometimes leads to gating on incorrect portions of the breathing cycle when the breathing trace is irregular. Displacement gating is less prone to such errors, as evidenced by the lower in-gate residual motion in a large majority of cases.
منابع مشابه
Individualized gating windows based on four-dimensional CT information for respiration-gated radiotherapy.
The purpose of this work is to relate the gating window and displacement of a moving tumor target and develop a systematic method to individualize the gating window for respiration-gated radiation therapy (RT). As the relationship between patient anatomy and respiration phase is contained in 4D images, we aim to quantify this information and utilize the data to guide gated treatment planning. A...
متن کاملPerformance evaluation of gated volumetric modulated arc therapy
Background: Aim of this study is to evaluate the accuracy of the gated volumetric modulated arc therapy (VMAT/RapidArc) using 2D planar dosimetry, DynaLog files and COMPASS 3D dosimetry system. Materials and Methods: Pre-treatment quality assurance of 10 gated VMAT plans was verified using 2D array and COMPASS 3D dosimetry system. Advantage of COMPASS over 2D planar is that it provides the clin...
متن کاملLow Dropout Based Noise Minimization of Active Mode Power Gated Circuit
Power gating technique reduces leakage power in the circuit. However, power gating leads to large voltage fluctuation on the power rail during power gating mode to active mode due to the package inductance in the Printed Circuit Board. This voltage fluctuation may cause unwanted transitions in neighboring circuits. In this work, a power gating architecture is developed for minimizing power in a...
متن کاملAudio-visual biofeedback for respiratory-gated radiotherapy: impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy.
PURPOSE Respiratory gating is a commercially available technology for reducing the deleterious effects of motion during imaging and treatment. The efficacy of gating is dependent on the reproducibility within and between respiratory cycles during imaging and treatment. The aim of this study was to determine whether audio-visual biofeedback can improve respiratory reproducibility by decreasing r...
متن کاملResidual motion of lung tumours in gated radiotherapy with external respiratory surrogates.
Due to respiration, many tumours in the thorax and abdomen may move as much as 3 cm peak-to-peak during radiation treatment. To mitigate motion-induced irradiation of normal lung tissue, clinics have employed external markers to gate the treatment beam. This technique assumes that the correlation between the external surface and the internal tumour position remains constant inter-fractionally a...
متن کامل